年谱里简单的叙述了一下各种基本粒子和相关的量子作用力的演化过程。(2)历史的印记 (A)微波背景辐射1964年,Arno Penzias and Robert Wilson 发现了宇宙中充满了异常均匀的背景辐射,频率相当于2.726K的温度。这个发现被授予1978年诺贝尔奖。这个辐射在大尺度上的均匀程度非常”异常”,因为没有显然的物理机制可以使相隔足够远的区域之间达到热力学平衡。更精密的观察证明这是一个近乎完美的黑体辐射。
这些细微的波动,其实代表早期宇宙中的声波!宇宙中的粒子,在引力和辐射的拉锯下,会产生密度的振荡波动,因而引起背景辐射随角变量的细微振荡波动。2006年物理学诺贝尔奖授予George Smoot 和 John C. Mather。他们发现了微波背景辐射的黑体辐射性质及其微妙的角分布。假如背景辐射的角变化是随机的,那么傅立叶频谱应该是一条水平线。频谱中的结构与我后面宇宙学理论可以达到高度吻合。
(D)宇宙在膨胀100年前,天体物理学家已经发现宇宙深处的星系在所有方向远离我们而去。距离越远,飞离的速度越大。感觉就像所有的星系固定在一个球上,而整个球在膨胀。膨胀的速度,就是哈勃-勒梅特定律 (Hubble-Lemaître Law):v = H x d,d 是两个遥远星系之间的距离,v 是它们相互飞离的相对速度。
暗物质到底是什么呢?2015年的物理学诺贝尔奖授予Takaaki Kajita and Arthur B. McDonald。他们发现了中微子的”振荡现象” (基本粒子三个家族中的中微子会相互转换),由此证明中微子是有质量的。中微子质量的来源还很费解,最受欢迎的”拉锯理论”认为宇宙中不但有左旋的质量很小的中微子,还有右旋的质量很大的中微子,而且两者的质量是成反比的。假如这个大质量的右旋中微子被某个探测器发现,接下去那年的诺贝尔奖就没有任何悬念了。大质量的中微子,假如存在,很可能是暗物质的一个重要组成部分。基于”拉锯理论”的”轻子生成理论”可以解释为什么宇宙中物质多于反物质。
(G)上帝啊!这么多星星!”God, it‘s full of stars!” last message from Dave Bowman,2001: a Space Odyssey,before he travels into spacetime。这个是哈勃望远镜拍摄的宇宙早期的星系。
普通物质因为引力被吸附在暗物质上,然后相互聚集,成为气体和尘埃。这些气体和尘埃相互吸引,开始在中心密集区域形成高温高压的原始恒星,并在恒星内部开始通过聚变制造重元素。超大质量的原始恒星最后发生引力崩塌,产生巨大的爆炸(超新星),爆炸中向空间发射出大量的物质(包括各种轻重元素),成为星际间的气体和尘埃。其内核则成为中子星或黑洞。 Illustris 模拟,45亿年
提出和构建暴涨理论的物理学家主要是斯坦福的Andrei Linde (我在宇宙学上的启蒙老师)和 麻省理工的 Alan Guth。暴涨理论给出了五个非常具体的预言,其中四个已经得到观察证实。未得到证实的关系到暴涨时发生的引力波。
l < 50 的部分来自于暴涨时期的振荡。暴涨理论预言这部分的强度应该是比较平坦的。第一个高峰来自引力与辐射压力之间的拉锯所引起的重子密度振荡,是一种声波,假如当时宇宙是平坦的,这个峰应该出现在 l=220。其他高峰代表重子密度其他更高频的振荡模式。从这些振荡模式,我们可以估算出当时物质相对于能量的密度和其他一些重要的参数。重子密度的振荡造成温度的微妙变化,所以也反映在黑体背景辐射里微妙的振荡。这两种震荡之间的关联也已被观察证实。暴涨理论虽然成功地解释了很多观察到的现象,它本质上还是一个维象理论。真正从粒子物理学基础上建立暴涨的原动力的发生机制,还有待粒子物理理论更深层的完善和对宇宙早期相变过程的更深了解。